Quantum Computing with Very Noisy Gates

Produced with pdflatex and xfig

- The C_4/C_6 architecture.
- Performance data from simulation.
- Resource requirements.

Fault-Tolerant Quantum Computing

Requirement 3 for scalable QC^a implementation:
 Sufficiently low noise affecting physical gates and memory.

DiVincenzo (2000) [4]

- Error model: The type of noise affecting a QC implementation.
- Fault-tolerant architecture: A scheme for scalable QC in the presence of noise.
- Fundamental problems of FTQC^b:
 - 1. Scalable QC with error model \mathcal{E} ?
 - 2. Scalable QC with fault-tolerant architecture \mathcal{A} and with \mathcal{E} ?
- Practical problems of FTQC^b:
 - 1. Can computation C be implemented with a given error and device budget?

a Quantum Computing. b Fault-Tolerant Quantum Computing

On Noise Thresholds

Fault-Tolerance Threshold Theorem.

- Thresholds depend on:
 - Error model
 - Available devices.
 - Geometrical constraints.
 - **-** . . .

$$\vec{0}$$
 < threshold < $\vec{1}$

- Threshold studies yield:
 - Fault-tolerant engineering strategies.
 - Guidelines for gate-error/geometry/resource trade-offs.
- Thresholds are asymptotic.
 - Thresholds are not "observable".
- Thresholds hide resource tradeoffs.

In Other Words...

- Thresholds are too optimistic.
 - Error budget near threshold → impractical resources.
 - ... try to do better by one to two orders of magnitude.
- Thresholds are too pessimistic.
 - Most bounds/estimates are based on specific, concatenated architectures.
 - Large computations/simulations/fundamental tests may be implementable anyway.
 - E.g. rare-error kickback may be deferred.
 - ... there is no non-idealized threshold.

Constructing Quantum Computers

Logical qubits and gates

Physical qubits and gates

Material qusystems and control

- Fault-tolerant architectures:
 physical qubits,gates ⇒ near-perfect logical qubits, gates.
- Common structural assumptions:
 - Remaining errors are not removable by physical engineering.
 - Physical qubits and gates are nearly independent.
 - Physical gates can be applied in parallel.
 - Any number of physical qubits can be used, subject to geometrical constraints.

Error Models I

General error expansion:

Unnormalized "environment" state

Error Models II

Unnormalized "environment" state

- Assume temporal and spatial independence:
 Total amplitude of errors simultaneously affecting
 k given locations decays exponentially with k.
- Further idealizing assumptions:
 - 1. Errors are probabilistic Pauli ($|e_p\rangle$ are orthogonal). Justification: The randomization conjecture.
 - 2. Errors at different locations are statistically independent. Justification: Increase physical separations or delocalize logical qubit encodings.

Two Error Trade-offs

Preparation and measurement error requirements are benign.
 Justification: Given good CNOTs, use classical error-correction and detection methods to reduce preparation and measurement errors.

 Long "measurement" times and feed-forward delays require very good quantum memories.

Explanation: Feedforward circuits require delaying for measurement outcomes.

Note: Feedforward loop does not require amplifying the measurement outcome for human consumption.

(memory error rate)*(feed-forward delay) $\ll 1$.

The C_4/C_6 Architecture: Features

- Use the simplest error-detecting codes and concatenation.
- Exploit error-correcting teleportation.
- Postselected quantum computing for state preparation.
- Partial decoding for state preparation.
- Fault-tolerant implementation of Clifford gates $+ \delta$ suffices.

- Evidence that depolarizing errors > 3% per CNOT* are ok.
- * error ϵ /CNOT $\equiv \frac{4\epsilon}{5}$ /one-qubit gate, $\frac{4\epsilon}{15}$ /preparation or measurement, no geometrical constraints.

Typical Resource Requirements

• Resource overheads* for the C_4/C_6 -architecture and different computation sizes (by simulation and modelling).

^{*} Order-of-magnitude, extrapolated.

C_4/C_6 concatenation hierarchy.

Error-correcting Teleportation

Syndrome measurement from qubit-wise teleportation.

- Syndrome → error detection, correction, tracking.
- Use Pauli frame to avoid explicit correction gates.

Post-selected State Preparation

- Error in the prepared state \equiv error in the input state.
- States only need to be "good" conditional on error checks.
 - Residual errors + input + Bell measurement errors must be correctable.
- Can use parallel state preparation factories.

C_4 Bell-State Preparation

C_4 Bell-State Preparation

C_4 Bell-State Preparation

Postselected Quantum Computing

- Postselected quantum computers.
 - Can execute any of the basic operations, but
 - an operation may fail, possibly destructively.
 - If an operation fails, this is announced.
 - ... exponentially small success probability (not 0) is possible.
- A postselected QC is fault-tolerant if success → negligible probability of error.
- A postselected FTQC only needs to detect errors.
- Does postselected FTQC imply FTQC?
 - ... Nearly: Use postselected FTQC to prepare key states.

Power of Clifford-Pauli Operations

- The CSS operations, CSS: Preparation of $|o\rangle$ and $|+\rangle$, CNOT, measurement of X and Z.
 - CSS operations suffice for encoding/decoding CSS codes.
- Universal quantum computation is possible with \mathcal{CSS} , H and $|\pi/8\rangle$ -preparation.

$$QC = \overbrace{\mathcal{CSS} + \underbrace{\text{``ϵ''}}_{H} + \underbrace{\text{``δ''}}_{\pi/8\rangle}.$$

- A fault-tolerant computation strategy:
 - 1. Implement a fault tolerant CSS computer, i.e. arbitrarily accurate logical CSS with feedforward.
 - 2. + " ϵ " + " δ " . . . + " δ ": $|\pi/8\rangle$ purification using good \mathcal{CSS} + " ϵ " Bravyi&Kitaev (2004) [1], Knill (2004) [2]
- FT \mathcal{CSS} and $(|\pi/8\rangle \text{ error}) \leq (|\mathfrak{o}\rangle, |+\rangle \text{ error}) \Rightarrow \text{FTQC}$?

In Other Words...

- 1. Build a device that supports a very good CSS-based (or similar) quantum memory for (say) three logical qubits.
- 2. Ensure that neighboring devices can exchange logical qubits.
- 3. Implement quantum gates internally to a device at leisure.
 - ⇒ the devices can form a quantum computer.

Simulation of the C_4/C_6 Architecture

- 1. Computer-assisted heuristics to arbitrarily high levels.
 - Error-model propagation to detect rare-error kickbacks.
- 2. Monte-Carlo simulation to determine C_4/C_6 error behavior up to level 4.

Implementation issues:

- Avoid transients:
 Verify error behavior of the second operation.
- Verify full error behavior:
 Operate on one-half of an entangled pair.
- Verify that errors do not compound:
 Check on a long sequence of operations.
- Architecture is not strictly concatenated:
 Full simulations at high levels.
- Keep track of resources used.

Error Probabilities for Scalable QC

Conclusion

 Can my computation (or simulation or fundamental test) be implemented with a given error and device budget?

Contents

Title: Quantum Computing0	Post-selected State Preparation	12
Fault-Tolerant Quantum Computing1	C_4 Bell-State Preparation I \dots	
On Noise Thresholds2	$C_4^{ ilde{T}}$ Bell-State Preparation II	
In Other Words3	C_4^{T} Bell-State Preparation III \ldots	
Constructing Quantum Computers4	Postselected Quantum Computing	
Error Models I5	Power of Clifford-Pauli Operations	
Error Models II	In Other Words	
Two Error Trade-offs7	Simulation of the C_4/C_6 Architecture	
The C_4/C_6 Architecture: Features8	Error Probabilities for Scalable QC	
Typical Resource Requirements9	Conclusion	21
C_4/C_6 concatenation hierarchy10	References	23
Frror-correcting Teleportation 11		

References

- [1] S. Bravyi and A. Kitaev. Universal quantum computation based on a magic states distillation. quant-ph/0403025, 2004.
- [2] E. Knill. Fault-tolerant postselected quantum computation: Schemes. quant-ph/0402171, 2004.
- [3] D. Gottesman. Stabilizer Codes and Quantum Error Correction. PhD thesis, Calif. Inst. Tech, Pasadena, California, 1997.
- [4] D.P. DiVincenzo. The physical implementation of quantum computation. Fort. Phys., 48:771–783, 2000.
- [5] P. W. Shor. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A, 52:2493–2496, 1995.
- [6] P. W. Shor. Fault-tolerant quantum computation. In *Proceedings of the 37th Symposium on the Foundations of Computer Science (FOCS)*, pages 56–65, Los Alamitos, California, 1996. IEEE press.
- [7] A. Yu. Kitaev. Quantum computations: Algorithms and error correction. Russian Math. Surveys, 52:1191–1249, 1997.
- [8] D. Aharonov and M. Ben-Or. Fault-tolerant quantum computation with constant error. In *Proceedings of the 29th Annual ACM Symposium on the Theory of Computation (STOC)*, pages 176–188, New York, New York, 1996. ACM Press.
- [9] E. Knill, R. Laflamme, and W. H. Zurek. Resilient quantum computation. Science, 279:342–345, 1998.
- [10] A. M. Steane. Overhead and noise threshold of fault-tolerant quantum error correction. *Phys. Rev. A*, 68:042322/1–19, 2003.
- [11] E. Knill. Fault-tolerant postselected quantum computation: Threshold analysis. quant-ph/0404104, 2004.
- [12] E. Knill. Quantum computing with realistically noisy devices. *Nature*, 434:39–44, 2005.
- [13] B. W. Reichardt. Improved ancilla preparation scheme increases fault tolerant threshold. quant-ph/0406025, 2004.
- [14] J. P. Clemens, S. Siddiqui, and J. Gea-Banacloche. Quantum error-correction against correlated noise. preprint, 2004.
- [15] B. M. Terhal and G. Burkard. Fault-tolerant guantum computation for local non-markovian noise. guant-ph/04020104, 2004.
- [16] R. Alicki. Comments on "fault-tolerant computation for local non-markovian noise. quant-ph/0402139, 2004.
- [17] E. Knill. Scalable quantum computation in the presence of large detected-error rates. *Phys. Rev. A*, 71:042322/1–7, 2005.

